Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina.

نویسندگان

  • Guangfei Hao
  • Haiqin Chen
  • Lei Wang
  • Zhennan Gu
  • Yuanda Song
  • Hao Zhang
  • Wei Chen
  • Yong Q Chen
چکیده

The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the gene encoding ME isoform E from Mortierella alpina was homologously expressed. ME overexpression increased the fatty acid content by 30% compared to that for a control. Our results suggest that ME may not be the sole rate-limiting enzyme, but does play a role, during fatty acid synthesis in oleaginous fungi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering of Mortierella alpina for arachidonic acid production with glycerol as carbon source

BACKGROUND Although some microorganisms can convert glycerol into valuable products such as polyunsaturated fatty acids, the yields are relative low due primarily to an inefficient assimilation of glycerol. Mortierella alpina is an oleaginous fungus which preferentially uses glucose over glycerol as the carbon source for fatty acid synthesis. RESULTS In the present study, we metabolically eng...

متن کامل

Genome Characterization of the Oleaginous Fungus Mortierella alpina

Mortierella alpina is an oleaginous fungus which can produce lipids accounting for up to 50% of its dry weight in the form of triacylglycerols. It is used commercially for the production of arachidonic acid. Using a combination of high throughput sequencing and lipid profiling, we have assembled the M. alpina genome, mapped its lipogenesis pathway and determined its major lipid species. The 38....

متن کامل

Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with delta12-desaturase gene expression.

An oleaginous fungus, Mortierella alpina 1S-4, is used commercially for arachidonic acid production. Delta12-Desaturase, which desaturates oleic acid (18:1n-9) to linoleic acid (18:2n-6), is a key enzyme in the arachidonic acid biosynthetic pathway. To determine if RNA interference (RNAi) by double-stranded RNA occurs in M. alpina 1S-4, we silenced the Delta12-desaturase gene. The silenced stra...

متن کامل

Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi

Microorganisms are valuable resources for lipid production. What makes one microbe but not the other able to efficiently synthesize and accumulate lipids is poorly understood. In the present study, global gene expression prior to and after the onset of lipogenesis was determined by transcriptomics using the oleaginous fungus Mortierella alpina as a model system. A core of 23 lipogenesis associa...

متن کامل

Improving the Efficiency of Homologous Gene Replacement by Disrupting Non-Homologous End Joining Pathway Gene KusA in the Oleaginous Fungus Mortierella alpina

filamentous fungus, is one of several industrial strains known for the production of arachidonic acid. It is also of particular interest for hydrocarbon biofuel production since it is able to produce up to 50% of its mass in rich, long-chain polyunsaturated fatty acids [PUFA’s]. M. alpina already has mechanisms for accumulating significant concentrations of hydrocarbon compounds, making it a na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 80 9  شماره 

صفحات  -

تاریخ انتشار 2014